

Koy ostimatos on a	lobal group	dwator abstr	action (rofor	nco voor 20	10)		
Key estimates on g	iobal groun		action (refere	nce year zo	(0)		
Continent	Groundwater abstraction ¹					Compared to total water abstractio	
	Irrigation	Domestic	Industrial	Total		Total water abstraction ²	Share of groundwater
	km³/year	km³/year	km³/year	km³/year	%	km³/year	%
North America	99	26	18	143	15	524	27
Central America and the Caribbean	5	7	2	14	1	149	9
South America	12	8	6	26	3	182	14
Europe (including Russian Federation)	23	37	16	76	8	497	15
Africa	27	15	2	44	4	196	23
Asia	497	116	63	676	68	2257	30
Oceania	4	2	1	7	1	26	25
World	666	212	108	986	100	3831	26

Groundwater development dates from ancient times

Qanat - An almost horizontal tunnel collecting water from an underground water source. The water is transported along underground tunnels, so-called koshkan, by gravity due to the gentle slope of the tunnel to the exit (mazhar), from where it is distributed by channels to the agricultural land of the shareholders. Well shafts are sunk at regular intervals along the route of the tunnel to enable removal of spoil and allow ventilation.

Vertical, drained compressibilitie	25	Material Compre	ssibility a (m ² /N or Pa ⁻¹
Material	α (m ² /N or Pa ⁻¹)	Clay	10 ⁻⁸ to 10 ⁻⁶
lastic clay	2×10 ⁻⁶ - 2.6×10 ⁻⁷	Sand	10 ⁻⁹ to 10 ⁻⁷
iff clay	2.6×10 ⁻⁷ – 1.3×10 ⁻⁷	Gravel	10^{-10} to 10^{-8}
ledium-hard clay	1.3×10 ⁻⁷ - 6.9×10 ⁻⁸	Sound rock	10 ⁻¹¹ to 10 ⁻⁹
oose sand	1×10 ⁻⁷ - 5.2×10 ⁻⁸		
ense sand	2×10 ⁻⁸ - 1.3×10 ⁻⁸	Material	S _s (ft ⁻¹)
ense sandy gravel	$1 \times 10^{-8} - 5.2 \times 10^{-9}$	Plastic clay	7.8×10 ⁻⁴ to 6.2×10 ⁻³
	1×10 = 5.2×10	Stiff clay	3.9×10 ⁻⁴ to 7.8×10 ⁻⁴
thyl alcohol	1.1×10 ⁻⁹	Medium hard clay	2.8×10 ⁻⁴ to 3.9×10 ⁻⁴
arbon disulfide	9.3×10 ⁻¹⁰	Loose sand	1.5×10^{-4} to 3.1×10^{-4}
ock. fissured	6.9×10 ⁻¹⁰ - 3.3×10 ⁻¹⁰	Dense sand	3.9×10 ⁻⁵ to 6.2×10 ⁻⁵
Vater at 25 °C (undrained)	4.6×10 ⁻¹⁰	Rock, fissured	1×10 ⁻⁶ to 2.1×10 ⁻⁵
ock sound	< 3 3×10 ⁻¹⁰	Rock, sound	< 1×10 ⁻⁶
	< 5.5/10 		
lycerine	2.1×10 ¹⁰	To Convert Di	vide By To Obtain
Aercury	3.7×10 ⁻¹	ft ⁻¹ (0.3048 m ⁻¹

IJI

Due to capillarity forces, not all water stored in voids and in interstitial spaces can be extractable.

• For unconfined aquifers, effective porosity, specific yield or drainable porosity represents the part of total porosity that yields water.

• $n = S_r + S_v$ S_r - specific retention

S_v - specific yield or effective drainable porosity

Material	Porosity (%)	Specific Yield (%)	Specific Retention (%)
Soil	55	40	15
Clay	50	2	48
Sand	25	22	3
Gravel	20	19	1
Limestone	20	18	2
Sandstone (unconsolidated)	11	6	5
Granite	0.1	0.09	0.01
Basalt (young)	11	8	3

Heath, R.C., 1983. Basic ground-water hydrology, U.S. Geological Survey Water-Supply Paper 2220

Exercise

Consider the region surrounding Beja in Alentejo (interior of Portugal), with an average annual precipitation equal to 578 mm/year and very low runoff. The chloride concentration in precipitation and groundwater has been monitored for some years and is estimated to be 4.2 mg/L and 48.2 mg/L, and 48.2 mg/L $R = \frac{C_P \cdot P + M_{app}}{C_{GW}} \qquad P = 578 \text{ mm} \\ C_P = 4.2 \text{ mg/L} \\ C_{GW} = 48.2 \text{ mg/L} \\ R = \frac{C_P \cdot P + M_{app}}{C_{GW}} = \frac{4.2 \cdot 578 + 0}{48.2} = 50.4 \text{ mm/year}$

55

TÉCNICO LISBOA

ſĮ