

- Social;
- It is difficult to quantify some issues which hinders the comparison of different possible solutions.

Path to success

- Water governance is key
 - Adequate legal and institutional framework
 - Stakeholders involvement with competent people with the right instruments
- In many parts of the world there is still a need for infrastructures:
 - There should be a business model to build, operate and maintain them.
 - In many cases, green infrastructures may be a solution.
- Promote water efficiency
 - Invest in infrastructure maintenance
 - Adopt a goof water pricing model to signal scarcity and promote efficient water use
 - Adopt flexible water allocation mechanisms
- Improve water quality
 - Wastewater collection and treatment

WARM: IST - ULIsboa, February 2022 @Rodrigo Proença de Oliveira, 202

- Non-point source is a major concern in most developed countries

WATER RESOURCES MODELING: PART 2: RESERVOIR OPERATION				
Monday	Tuesday	Wednesday	Thursday	Friday
Topic – Introduction to water management	Topic – Simulation of reservoirs operation	Topic – Optimization of reservoir operation	Topic – Optimization of reservoir operation	Topic – Groundwater management
Lectures:	Lectures:	Lectures:	Lectures:	Lectures:
 The importance of water for human development. 	 Flow duration curves and empirical distribution curves 	 Simulation vs optimization models. 	 Dynamic programming for water management. 	 Basic concepts of groundwate resources.
 Fundamentals of water management and the challenges of integrated watershed and water 	Reservoir sizing Reservoir simulation Performance indicators for reservoir constraints	Linear programming for water management.	Multi-objective optimization. Students work (in groups)	 Types of aquifers and aquitards. Aquifer characterization.
Water and civilization.	Reservoir operation rules.	Students work (in groups)		 Surface water / groundwater
 Consumptive and non- consumptive water uses. 	 Risk management and the concept of hedging. 			 Groundwater models.
 Types of dams and reservoirs and its main structures. 	 Reservoir operation simulation models and integrated water management models. 			
Students work (in groups)				
	Students work (in groups)			

Sanitary revolution

- Industrialization and urbanization lead to pollution and health problems from water borne diseases: i.e. cholera and typhoid fever.
- Toilet invention (1596, 1775, 1860): a great idea that created many problems;
- London Great stink 1858;
- London Cholera outbreaks 1831-1832; 1848-1849; 1853-1854;
- Edwin Chadwick (1842): argued for the relation between health and unsanitary conditions miasma theory: foul smells were the cause of cholera;
- John Snow (1854): advanced the idea that cholera was a waterborne decease;
- Joseph Bazalgette: designed the London's first modern urban water supply and sewage system (1869-1879).

 Aquaculture farming require water bodies with good/excellent status, low flow velocities and adequate water depths.

Aquaculture farming

SWARM: IST - ULIsboa, February 2022 @Rodrigo Proença de Oliveira, 202

Types of hydropower plants

Example of run-of-river dam: Crestuma dam

Example of a reservoir dam: Aguieira dam

TÉCNICO LISBOA IĮ Largest dams and reservois (by height and reservoir volume) Name Height (m) Country Purpose ROGUN (C) 335 нι Tajikistan BAKHTIYARI (C) 315 HC Iran JINPING 1 (C) 305 HC China NUREK 300 IΗ Tajikistan LIANGHEKOU (C) 295 China XIAOWAN HCIN 294 China Grand Dixence dam (Switzerland) XILUODU (C) 286 HCN China GRANDE DIXENCE 285 Н Switzerland Volume Dam name Country (Mm³) KARIBA 180 600 Zambia/Zimbabwe BRATSK 169 000 Russia HIGH ASWAN DAM 162 000 Egypt AKOSOMBO 150 000 Ghana DANIEL JOHNSON 141 851 Canada High Assuan dam (Egypt) GURI 135 000 Venezuela

75

Types of dams and reservoirs according to its purpose

- Storage
 - To transfer water from wet seasons to dry seasons and ensure the water needs satisfaction.
- Derivation
 - To create a small water body that enables the transfer of water to channels or pipes
 - Flood retention/attenuation:
 - To temporarily retain flood water or solid material
- Power production

SWARM: IST - III Ishoa February 2022 @Rodrigo P

Multi-purpose

Alqueva dam

Alqueva irrigation channel

