

٥٥

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

Transient open channel flow

Daniel Wildt

SWARM Summer School 15 – 26 November 2021

17th November 2021

.....

Outline I

۵0

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

Implicit Euler scheme

Partial differential equaitons

Explicit time discretization Stability and CFL Criterion Flood wave Implicit time discretization Convergence

Quality of a numerical model

Transient open channel flow

Governing equations and discretization Flood wave with an implicit scheme

Daniel Wildt 17/11/2021

Implicit scheme

٥٥

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

Example:

$$u' = 4tu \qquad \qquad u(0) = 2 \qquad (1$$

Analytical solution:

$$u(t) = 2e^{2t^2}$$
 (2)

Implicit time discretization of equation (1):

$$\frac{\mathrm{d}u}{\mathrm{d}t} = u' = 4tu \Rightarrow \frac{\Delta u}{\Delta t} = 4tu \Rightarrow \frac{u_{n+1} - u_n}{\underbrace{t_{n+1} - t_n}_h} = 4t_{n+1} \cdot u(t_{n+1}) \qquad (3)$$
$$\Rightarrow u_{n+1} = u_n + 4 \cdot h \cdot t_{n+1} \cdot u_{n+1}$$
$$\Rightarrow u_{n+1} = \frac{u_n}{1 - 4ht_{n+1}} \qquad (4)$$

Daniel Wildt 17/11/2021

Implicit scheme

University of Natural Resources

							anu	Life Sciences, vienna	
				A	В	С	D	rtment of Water, Atmospher	
		1	i	t	u implicit Euler	u analytical			
			2	0	0	2.0000	2.0000		
			3	1	0.1	2.0833	2.0404		
			4	2	0.2	2.2645	2.1666		
			5	3	0.3	2.5733	2.3944		
			б	4	0.4	3.0634	2.7543		
			7	5	0.5	3.8293	3.2974		
			8	6	0.6	5.0385	4.1089		
			9	7	0.7	6.9980	5.3289		
	A	В	10	8	0.8	10.2912	7.1933		
1	u0	2	11	9	0.9	16.0799	10.1062		
2	h	0.1	12	10	1	26.7999	14.7781		
(a) input					(t) solution			

 $\mathsf{Fig.:}$ Ordinary differential equation solved in Excel using implicit time discretization

Daniel Wildt 17/11/2021

٥٥.

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere

Partial differential equaitons

Example: Advection-equation (see also mass transport):

 $\frac{\partial \phi}{\partial t} + u \cdot \frac{\partial \phi}{\partial x} = 0$

Initial condition:

$$\phi(x,0) = \begin{cases} 1 & \text{für } 0 < x \le 1 \\ 0 & \text{sonst} \end{cases}$$
(6)

🚯 swarm 💵

to solve on x = [0, 20] with boundary conditions:

(

$$\phi(0,t) = f(20,t) = 0 \tag{7}$$

Daniel Wildt 17/11/2021

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere

۵٥

and Environment

(5)

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

Forward in time and backward in space (upwind):

$$\frac{\phi_i^{n+1} - \phi_i^n}{\Delta t} + u \cdot \frac{\phi_i^n - \phi_{i-1}^n}{\Delta x} = 0 \Rightarrow \phi_i^{n+1} = \phi_i^n - \Delta t \cdot u \cdot \frac{\phi_i^n - \phi_{i-1}^n}{\Delta x}$$
(8)

Forward time, central space (FTCS):

$$\frac{\phi_i^{n+1} - \phi_i^n}{\Delta t} + u \cdot \frac{\phi_{i+1}^n - \phi_{i-1}^n}{2 \cdot \Delta x} = 0 \Rightarrow \phi_i^{n+1} = \phi_i^n - \Delta t \cdot u \cdot \frac{\phi_{i+1}^n - \phi_{i-1}^n}{2 \cdot \Delta x}$$
(9)

Daniel Wildt 17/11/2021

Partial differential equaitons: Explicit (time discretization

University of Natural Resources

								and Life Sciences, vienna		
				A	В	C	D	E	F	G
			1	n/i		0	1	2	3	4
			2		t/x	0	1.000	2.000	3.000	4.000
			3	0	0.0	0	1.000	0.000	0.000	0.000
			4	1	0.5	0	0.500	0.500	0.000	0.000
			5	2	1.0	0	0.250	0.500	0.250	0.000
			6	3	1.5	0	0.125	0.375	0.375	0.125
			7	4	2.0	0	0.063	0.250	0.375	0.250
			8	5	2.5	0	0.031	0.156	0.313	0.313
			9	6	3.0	0	0.016	0.094	0.234	0.313
			10	7	3.5	0	0.008	0.055	0.164	0.273
			11	8	4.0	0	0.004	0.031	0.109	0.219
			12	9	4.5	0	0.002	0.018	0.070	0.164
		D	13	10	5.0	0	0.001	0.010	0.044	0.117
4	A	D 1	14	11	5.5	0	0.000	0.005	0.027	0.081
1	u Dalta t	1	15	12	6.0	0	0.000	0.003	0.016	0.054
2	Delta t	0.5	16	13	6.5	0	0.000	0.002	0.010	0.035
3	Delta x	1	17	14	7.0	0	0.000	0.001	0.006	0.022
4	CFL R	0.5	18	15	7.5	0	0.000	0.000	0.003	0.014

(c) input

(d) upwind scheme

Fig.: Solution of the advection equation (5) with $\Delta t = 0.5$ in Excel

Daniel Wildt 17/11/2021

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

Partial differential equaitons: Explicit SW2 MM (

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

Partial differential equaitons: Explicit SW2 r (100) (

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

Partial differential equaitons: Stability SW2 M (1990) (19

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

For numerical stability of schemes using explicit time discretization the Courant number (*CFL* or *R*) needs to fall below a certain value, usually < 1:

$$CFL = R = \frac{\Delta t}{\Delta x} \cdot \sup_{i} |f'(u_i)|$$
 (10)

Simplification of equation (10) for the one-dimensional advection equation with constant u:

$$CFL = R = \frac{\Delta t}{\Delta x} \cdot u \tag{11}$$

Partial differential equaitons: Stability SW2 M (

Example: Estimate the Courant number for the numerical sean advection equation given the following values!

 $lack u = 2 \,\mathrm{m}\,\mathrm{s}^{-1}$

- $\blacktriangleright \Delta x = 3 \,\mathrm{m}$
- $\blacktriangleright \Delta t = 2 s$

Equation (11):

$$CFL = rac{\Delta t}{\Delta x} \cdot u = 1,3$$

required time step for CFL < 1:

$$ightarrow \Delta t < CFL \cdot rac{\Delta x}{u} \Rightarrow \Delta t < 1.5 \,\mathrm{s}$$

Daniel Wildt 17/11/2021 University of Natural Resources and Life Sciences, Vienna Opput from Worf, Appphere and Environment

Partial differential equaitons: Flood SW2 CM (19)

A flood wave is flowing through the following river section. In addition the sciences viena given values an initial condition h(x, t = 0) and boundary condition h(0, t) need to be estimated

- length L of the river section: 140 km
- width B of the river section: 30 m
- ▶ bed slope *I*: 0,001
- roughness $k_{\rm St}$: 40 m^{1/3} s⁻¹ ($C = k_{\rm St} \cdot R^{\frac{1}{6}}$)
- constant flow rate: $560 \text{ m}^3 \text{ s}^{-1}$

Continuous gauge data is available from the start of the section

maximum water depth of 7,96 m is observed after 6 hours

▶ after 24 h the constant flow rate of $560 \text{ m}^3 \text{ s}^{-1}$ is reached again

Daniel Wildt 17/11/2021

Summer School Transient open channel flow University of Natural Resources

Partial differential equaitons: Flood wave

٥٥

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

Tasks Hochwasserwelle_expl.xlsm

- 1. What is the value of the peak discharge at the upper end the river section
- 2. At what time does this peak discharge occur in the middle of the river section
- 3. What is the value of the peak discharge in the middle of the river section?
- 4. What is the range of R (stability criterion CFL)?

Partial differential equaitons: Implicit SW2 CM (1990)

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

Forward time and backward space discretization (implicit upwind):

$$\frac{\phi_{i}^{n+1} - \phi_{i}^{n}}{\Delta t} + u \cdot \frac{\phi_{i}^{n+1} - \phi_{i-1}^{n+1}}{\Delta x} = 0$$

$$\Rightarrow \phi_{i}^{n+1} + \underbrace{u \cdot \frac{\Delta t}{\Delta x}}_{c} \cdot \left(\phi_{i}^{n+1} - \phi_{i-1}^{n+1}\right) = \phi_{i}^{n}$$

$$- c \cdot \phi_{i-1}^{n+1} + (1+c) \cdot \phi_{i}^{n+1} = \phi_{i}^{n}$$
(12)

Partial differential equaitons: Implicit SW2 CM (1990)

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

Using boundary conditions ϕ_0 and ϕ_{N_x} in equation (13) the following system of equations is obtained:

$$\begin{pmatrix} 1+c & 0 & 0 & 0 & \cdots & 0 \\ -c & 1+c & 0 & 0 & \cdots & 0 \\ 0 & -c & 1+c & 0 & \cdots & 0 \\ \vdots & & & \ddots & & \vdots \\ 0 & \cdots & 0 & -c & 1+c & 0 & 0 \\ 0 & \cdots & 0 & 0 & -c & 1+c & 0 \\ 0 & \cdots & 0 & 0 & 0 & -c & 1+c \end{pmatrix} \cdot \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \\ \vdots \\ \vdots \\ \phi_{N_x-3} \\ \phi_{N_x-1} \end{pmatrix}^{n+1} = \begin{pmatrix} \phi_1 + c\phi_0 \\ \phi_2 \\ \phi_3 \\ \vdots \\ \vdots \\ \phi_{N_x-3} \\ \phi_{N_x-2} \\ \phi_{N_x-1} \end{pmatrix}^{n}$$
(14)

Partial differential equaitons: Implicit SW2 CM (1)

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

Fig.: Solution of the advection equation (5) using implicit time discretization (implicit upwind)

Many schemes using implicit time discretization are stable even for $\mathit{CFL}>1$

Daniel Wildt 17/11/2021

Partial differential equaitons: Conver-

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

Daniel	Wildt
17/11/	2021

University of Natural Resources and Life Sciences, Vienna

Timestep for $\Delta x = 0.01$ and CFL = 0.5:

$$\Delta t = \frac{\Delta x}{u} \cdot 0.5 = 0.005 \rightarrow 4\,000 \text{ timesteps}, 2\,000 \text{ points in space}$$

Daniel Wildt 17/11/2021

Partial differential equaitons: Quality () SW2 M (of a numerical model

University of Natural Resources and Life Sciences, Vienna

and Environment

- \blacktriangleright Consistency: $\Delta x \rightarrow 0$, $\Delta t \rightarrow 0$: discretization error $\rightarrow \Phi$
- Stability: error bounded for the entire flow field
- Convergence = Consistency + Stability (Lax' theorem)

Transient open channel flow: Governing i SW2rM and disequations cretization

۵۵

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

Continuity (rectangular cross section):

$$b \cdot \frac{\partial h}{\partial t} + \frac{\partial Q}{\partial x} = 0$$
 (15)

Equation of motion (momentum):

$$\frac{\partial Q}{\partial t} + \frac{\partial}{\partial x} \cdot \left(\beta \cdot \frac{Q^2}{A}\right) + g \cdot A \cdot \left(\frac{\partial h}{\partial x} - I_0 + I_R\right) = 0 \quad (16)$$

Fig.: Equation of motion (16) (Aubrunner, 2009)

Daniel Wildt 17/11/2021

Transient open channel flow: Governing equations and discretization

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

Discreitization of the continuety equation (15) using the Euler scheme or the Predictor-Corrector scheme:

$$b \cdot \frac{h_i^{n+1} - h_i^n}{\Delta t} + \frac{Q_{i+1}^n - Q_{i-1}^n}{2 \cdot \Delta x} = 0$$
 (17)

Transient open channel flow: Governing equations and discretization

Discretization of the equation of motion (16) using:

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

Preissmann-Scheme: h and Q unknown at all mesh points

Abbott-Inesco Schema: unknown properties are defined alternately on the mesh (staggered-grid scheme)

Daniel Wildt 17/11/2021

Transient open channel flow: Flood wave with an implicit scheme

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

Study the flood wave from above using an implicit scheme

Tasks Hochwasserwelle_impl.xlsm

- 1. What is the value of the peak discharge at the upper end the river section
- 2. At what time does this peak discharge occur in the middle of the river section
- 3. What is the value of the peak discharge in the middle of the river section?
- 4. What is the range of R (stability criterion CFL)?

Summary

۵٥

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

Stencil of an explicit and an implicit scheme:

Fig.: Comparison of an explicit and and implicit scheme

Daniel Wildt 17/11/2021

٥٥

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

University of Natural Resources and Life Science, Vienna

Department of Water, Atmosphere and Environment

Institut of Hydraulic Engineering and River Research

Daniel Wildt, MSc

Muthgasse 107, A - 1190 Wien Tel.: 01-47654-81935 daniel.wildt@boku.ac.at http://www.wau.boku.ac.at/iwa/

Literatur I

٥٥

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

Aubrunner, B. (2009). 'Ein arbeitsblattbasiertes Programm zur eindimensionalen Berechnung des instationären Abflusses in offenen Gerinnen'. Masterarbeit. Universität für Bodenkultur Wien.