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Implicit Euler
scheme

Example:
u′ =4tu u(0) =2 (1)

Analytical solution:
u(t) = 2e2t2 (2)

Implicit time discretization of equation (1):
du
dt = u′ = 4tu ⇒ ∆u

∆t = 4tu ⇒ un+1 − un
tn+1 − tn︸ ︷︷ ︸

h

= 4tn+1 · u(tn+1) (3)

⇒ un+1 = un + 4 · h · tn+1 · un+1

⇒ un+1 = un
1− 4htn+1

(4)
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Implicit Euler
scheme

(a) input (b) solution

Fig.: Ordinary differential equation solved in Excel using implicit time
discretization
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Implicit Euler
scheme
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Partial differential
equaitons

Example: Advecdtion-equation (see also mass transport):

∂φ

∂t + u · ∂φ
∂x = 0 (5)

Initial condition:
φ(x , 0) =

{
1 für 0 < x ≤ 1
0 sonst (6)

to solve on x = [0, 20] with boundary conditions:

φ(0, t) = f (20, t) = 0 (7)
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Partial differential
equaitons: Explicit
time discretization

Forward in time and backward in space (upwind):

φn+1
i − φn

i
∆t + u ·

φn
i − φn

i−1
∆x = 0⇒ φn+1

i = φn
i −∆t · u ·

φn
i − φn

i−1
∆x (8)

Forward time, central space (FTCS):

φn+1
i − φn

i
∆t + u ·

φn
i+1 − φn

i−1
2 ·∆x = 0⇒ φn+1

i = φn
i −∆t ·u ·

φn
i+1 − φn

i−1
2 ·∆x (9)
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Partial differential
equaitons: Explicit
time discretization

(c) input (d) upwind scheme

Fig.: Solution of the advection equation (5) with ∆t = 0,5 in Excel
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Partial differential
equaitons: Explicit
time discretization
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(a) upwind scheme
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(b) FTCS scheme

Fig.: Solution of the advection equation (5) with ∆t = 2,0
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Partial differential
equaitons: Explicit
time discretization
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(a) upwind scheme
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(b) FTCS scheme

Fig.: Solution of the advection equation (5) with ∆t = 0,5
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Partial differential
equaitons: Explicit
time discretization
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(a) upwind scheme
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(b) FTCS scheme

Fig.: Solution of the advection equation (5) with ∆t = 0,2
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Partial differential
equaitons: Stability
and CFL Criterion

For numerical stability of schemes using explicit time discretization the
Courant number (CFL or R) needs to fall below a certain value, usually
< 1:

CFL = R = ∆t
∆x · sup

i
|f ′(ui )| (10)

Simplification of equation (10) for the one-dimensional advection equation
with constant u:

CFL = R = ∆t
∆x · u (11)
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Partial differential
equaitons: Stability
and CFL Criterion

Example: Estimate the Courant number for the numerical solution of an
advection equation given the following values!
I u = 2m s−1
I ∆x = 3m
I ∆t = 2 s

Equation (11):
CFL = ∆t

∆x · u = 1,3

required time step for CFL < 1:

→ ∆t < CFL · ∆x
u ⇒ ∆t < 1,5 s

Daniel Wildt Summer School
17/11/2021 Transient open channel flow 13/28



University of Natural Resources
and Life Sciences, Vienna
Department of Water, Atmosphere
and Environment

Partial differential
equaitons: Flood
wave

A flood wave is flowing through the following river section. In addition to the
given values an initial condition h(x , t = 0) and boundary condition h(0, t) need
to be estimated
I length L of the river section: 140 km
I width B of the river section: 30m
I bed slope I: 0,001
I roughness kSt: 40m1/3 s−1 (C = kSt · R

1
6 )

I constant flow rate: 560m3 s−1

Continuous gauge data is available from the start of the section
I maximum water depth of 7,96m is observed after 6 hours
I after 24 h the constant flow rate of 560m3 s−1 is reached again
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Partial differential
equaitons: Flood
wave

Tasks Hochwasserwelle_expl.xlsm

1. What is the value of the peak discharge at the upper end the river
section

2. At what time does this peak discharge occur in the middle of the river
section

3. What is the value of the peak discharge in the middle of the river
section?

4. What is the range of R (stability criterion CFL)?
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Partial differential
equaitons: Implicit
time discretization

Forward time and backward space discretization (implicit upwind):

φn+1
i − φn

i
∆t + u ·

φn+1
i − φn+1

i−1
∆x =0 (12)

⇒φn+1
i + u · ∆t

∆x︸ ︷︷ ︸
c

·
(
φn+1

i − φn+1
i−1

)
= φn

i

− c · φn+1
i−1 + (1 + c) · φn+1

i = φn
i (13)
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Partial differential
equaitons: Implicit
time discretization

Using boundary conditions φ0 and φNx in equation (13) the following
system of equations is obtained:

1 + c 0 0 0 . . . 0
−c 1 + c 0 0 . . . 0
0 −c 1 + c 0 . . . 0
...

. . .
...

0 . . . 0 −c 1 + c 0 0
0 . . . 0 0 −c 1 + c 0
0 . . . 0 0 0 −c 1 + c

 ·


φ1
φ2
φ3
...

φNx −3
φNx −2
φNx −1


n+1

=


φ1 + cφ0
φ2
φ3
...

φNx −3
φNx −2
φNx −1


n

(14)
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Partial differential
equaitons: Implicit
time discretization
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(a) ∆t = 2, 0
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(b) ∆t = 1, 0
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(c) ∆t = 0, 5

Fig.: Solution of the advection equation (5) using implicit time discretization
(implicit upwind)

Many schemes using implicit time discretization are stable even for
CFL > 1
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Partial differential
equaitons: Conver-
gence
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(a) ∆x = 1, 00
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(b) ∆x = 0.50
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Partial differential
equaitons: Conver-
gence
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(c) ∆x = 0, 10
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(d) ∆x = 0, 01

Timestep for ∆x = 0,01 and CFL = 0,5:

∆t = ∆x
u · 0,5 = 0,005→ 4 000 timesteps, 2 000 points in space

Daniel Wildt Summer School
17/11/2021 Transient open channel flow 20/28



University of Natural Resources
and Life Sciences, Vienna
Department of Water, Atmosphere
and Environment

Partial differential
equaitons: Quality
of a numerical model

I Consistency: ∆x → 0, ∆t → 0: discretization error → 0
I Stability: error bounded for the entire flow field
I Convergence = Consistency + Stability (Lax’ theorem)

Fig.: Quality of a numerical model (source: M. Tritthart)
Daniel Wildt Summer School
17/11/2021 Transient open channel flow 21/28



University of Natural Resources
and Life Sciences, Vienna
Department of Water, Atmosphere
and Environment

Transient open chan-
nel flow: Governing
equations and dis-
cretization
Continuity (rectangular cross
section):

b · ∂h
∂t + ∂Q

∂x = 0 (15)

Equation of motion (momentum):

∂Q
∂t + ∂

∂x ·
(
β · Q2

A

)
+ g · A ·

(
∂h
∂x − I0 + IR

)
= 0 (16)

Fig.: Equation of motion (16)
(Aubrunner, 2009)
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Transient open chan-
nel flow: Governing
equations and dis-
cretization

Discreitization of the continuety equation (15) using the Euler scheme or
the Predictor-Corrector scheme:

b · hn+1
i − hn

i
∆t +

Qn
i+1 − Qn

i−1
2 ·∆x = 0 (17)
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Transient open chan-
nel flow: Governing
equations and dis-
cretization
Discretization of the equation of motion (16) using:
Preissmann-Scheme: h and Q unknown at all mesh points
Abbott-Inesco Schema: unknown properties are defined alternately on the

mesh (staggered-grid scheme)

(a) Preissmann-Scheme (b) Abbott-Inesco Scheme
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Transient open
channel flow: Flood
wave with an implicit
scheme

Study the flood wave from above using an implicit scheme

Tasks Hochwasserwelle_impl.xlsm

1. What is the value of the peak discharge at the upper end the river
section

2. At what time does this peak discharge occur in the middle of the river
section

3. What is the value of the peak discharge in the middle of the river
section?

4. What is the range of R (stability criterion CFL)?
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Summary

Stencil of an explicit and an implicit scheme:

Fig.: Comparison of an explicit and and implicit scheme
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