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Exa m p I e: ::;zr;vifg:‘;fe\:‘\:ater, Atmosphere
v =4tu u(0) =2 (1)
Analytical solution: ,
u(t) = 2t (2)
Implicit time discretization of equation (1):
du , Au Upt1 — Up
— =U =4tu= — =4tu = ——— = 4t,1 - u(t 3
dt At tn+1 —t, n+1 ( n+1) ( )
——
h
= Upp1 = Up+4-h-thi1- Upp1
Up
= Uy =— — 4
1 1—4ht ( )
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Implicit Euler ¢ 3-
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A | B | c | D | rtment of Water, Atmosphere

1 i t u implicit Euler |u analytical

2 0 0 2.0000 2.0000

3 1 01 2.0833 2.0404

4 2 0.2 2.2645 2.1666

5 3 03 2.5733 2.3944

6 4 04 3.0634 2.7543

7 5 05 3.8293 3.2974

8 6 0.6 5.0385 4.1089

9 7 07 6.9980 5.3289

_ Al B [0 8 08 10.2912 7.1933
_1 o 2 11 9 09 16.0799 10.1062
2 h | 01 12| 10 1 267999 147781

(a) input (b) solution

Fig.: Ordinary differential equation solved in Excel using implicit time
discretization
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du/dt =4tu,h =0.1 Error nofifEnvironment
3 analytical solution S = explicit Euler
o explicit Euler —— implicit Euler
& implicit Euler o —— Predictor-Corrector
w0 _| + Predictor-Corrector
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X h
(a) solution (b) p2-norms
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Partial  differential ¢ )=
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Example: Advecdtion-equation (see also mass transport):  andenvonment

o¢ ¢ _

Initial condition:
1 fir0<x<1

9(x,0) = { 0 sonst
to solve on x = [0, 20] with boundary conditions:

¢(0,t) =1(20,t) =0 (7)
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Partial differential

equaitons:  Explicit (c SWe¢ rM
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time discretization
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Forward in time and backward in space (upwind):

ot —op L op— oL o7 — ¢4

-1 _ L _ 0 Aty
At Ax =0=9¢/"" =¢] —At-u Ax (8)

Forward time, central space (FTCS):

n+l _ n n __n no___ AN
d’: A ¢1 +u_¢l+21‘Aib<ll :0:>¢7+1:¢?—At-u- l+21.AX171 (9)

Daniel Wildt Summer School
17/11/2021 Transient open channel flow 7/28



Partial  differential

equaitons:  Explicit ‘t SWe ' L %ﬁ
time discretization _
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A | B | c | b | E | F | G b

T nfi 0 1 2 3 4

2 tix 0 1.000 2.000 3.000 4.000

T3 0 0.0 0 1.000 0.000 0.000 0.000

a 1 05 0 0.500 0.500 0.000 0.000

s 2 1.0 0 0.250 0.500 0.250 0.000

6 | 3 15 0 0.125 0.375 0.375 0.125

7 4 2.0 0 0.063 0.250 0.375 0.250

8| 5 25 0 0.031 0.156 0.313 0.313

9| 6 3.0 0 0.016 0.094 0.234 0.313

10 | 7 35 0 0.008 0.055 0.164 0.273

11 8 4.0 0 0.004 0.031 0.109 0.219

12| 9 45 0 0.002 0.018 0.070 0.164

13 10 5.0 0 0.001 0.010 0.044 0.117

: ‘u L B 1‘ 4 11 55 0 0.000 0.005 0.027 0.081
1 12 6.0 0 0.000 0.003 0.016 0.054

2 Deltat 0.5 ¢ 13 65 0 0.000 0.002 0.010 0.035
3 |Delta x 1 7] 14 7.0 0 0.000 0.001 0.006 0.022
4 CFLR 05 18 15 7.5 0 0.000 0.000 0.003 0.014

(c) input (d) upwind scheme

Fig.: Solution of the advection equation (5) with At = 0,5 in Excel
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Partial differential

equaitons:  Explicit Ct SW.( rM

time discretization

Longitudinal section: upwind, CFL =2.0

5=
Q@ ==
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Longitudinal section: FTCS, CFL =2.0
80 —t=0 64 —_—t=0
60 —t=2 1] ———1
—t=4 —t=4
10 — =10 2 — =10
20 [\ 0
500 Y
: -20 \V
10 6
-60 -8
-80 ~104
00 25 50 75 100 125 150 175 200 00 25 50 75 125 150 175 200

10.0
z

(a) upwind scheme

(b) FTCS scheme

Fig.: Solution of the advection equation (5) with At =2,0
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Partial
equaitons:
time discretization

Longitudinal section: upwind, CFL =0.5

differential

Explicit ¢, SWe' l'N\@
CE
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Longitudinal section: FTCS, CFL =0.5
L0 t=0 —_—t=0
t=2 104 —_—t=2
08 = e
t=10 054 —_— =10
0.6
= =00
N 04 °
~0.51
0.2
~1.04
0.0
0.0 2.5 5.0 75 10.0 125 15.0 17.5 20.0 5.0 7.5 10.0 125 15.0 17.5 20.0
(a) upwind scheme (b) FTCS scheme
Fig.: Solution of the advection equation (5) with At = 0,5
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Partial differential

equaitons:  Explicit “E SWe¢ er f

time discretization
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Longitudinal section: upwind, CFL =0.2 Longitudinal section: FTCS, CFL =0.2
10 0 1.0 jE———y
2 —t=2
4 0.84 ——
0.8
10 064 —_— =10
. 0.6 . 0.44
::; \g/ 0.24
04
0.04
0.2 —0.24
~0.44
0.0
0.0 2.5 5.0 75 10.0 125 15.0 17.5 20.0 0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0
(a) upwind scheme (b) FTCS scheme
Fig.: Solution of the advection equation (5) with At = 0,2
Daniel Wildt Summer School

17/11/2021 Transient open channel flow 11/28



Partial differential
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For numerical stability of schemes using explicit time discretization the
Courant number (CFL or R) needs to fall below a certain value, usually
<1 A
t
CFL=R = Ax -SL;p]f’(u;)\ (10)

Simplification of equation (10) for the one-dimensional advection equation
with constant u:

At
CFL=R="". 11
AU (11)
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Partial differential

equaitons: Stability (c SWe '\ @KU %ﬁ
and CFL Criterion o0
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Example: Estimate the Courant number for the numerical selutionior anser
advection equation given the following values!

> u=2ms !
> Ax=3m
> At =2s

Equation (11):
At
CFL=— -u=1
A Y 3

required time step for CFL < 1:

—>At<CFL-%:>At<1,55
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Partial differential

equaitons: Flood (c SWe¢ rM

wave CE—

University of Natural Resources
A flood wave is flowing through the following river section. In adds
. . e e .. . and Enyir en
given values an initial condition h(x, t = 0) and boundary condition h(U;t) need
to be estimated

I.ifeSciginces ienna
Edt d Qatl osphere

» length L of the river section: 140 km

» width B of the river section: 30m

» bed slope /: 0,001

> roughness kg;: 40m/3s~! (C = kg - R¢)
> constant flow rate: 560 m>s™1

Continuous gauge data is available from the start of the section

» maximum water depth of 7,96 m is observed after 6 hours

> after 24 h the constant flow rate of 560 m3s~1 is reached again
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Partial  differential
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wave CE—
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Tasks Hochwasserwelle_expl.xlsm
1. What is the value of the peak discharge at the upper end the river
section

2. At what time does this peak discharge occur in the middle of the river
section

3. What is the value of the peak discharge in the middle of the river
section?

4. What is the range of R (stability criterion CFL)?
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time discretization

Partial  differential
equaitons:  Implicit (t SWe¢ r'M
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Forward time and backward space discretization (implicit upwind):

n+1 n n+l _ n+1
orioop oot )
At Ax
nt1 At n+l  n+l n
=¢; +U'B‘<¢,~ —¢i71> = ¢;
——
c

—c ¢+ (L+c)- o] =¢] (13)
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Partial  differential

equaitons: Implicit (t SWe¢ '\ @KU
time discretization _
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Using boundary conditions ¢¢ and ¢y, in equation (13) the following
system of equations is obtained:

14c 0 0 0 0 #1 s $1 + coo
—c  14c 0 0 S 0 b2 2
0 —c 1+c 0 0 3 @3

: : — . (14)
0 0 —c 1l+c 0 0 PNy —3 PNy —3
0 . 0 0 —c 14c¢ 0 PNy —2 PNy —2
0 0 0 0 —c  1l4c PNy —1 PNy —1
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Partial  differential

equaitons:  Implicit ‘t SWe¢ r'M
time discretization
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cit, CFL =05

(a) At=2,0 (b) At=1,0 () At=0,5
Fig.: Solution of the advection equation (5) using implicit time discretization
(implicit upwind)

Many schemes using implicit time discretization are stable even for
CFL>1

+
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Longitudinal section: upwind, CFL =0.5 Longitudinal section: upwind, CFL =0.5

104 —_—t=0

—_—t=2

—_—t=a

0.8

0.8

— t=10

0.6

o(a.t)

0.4

0.2 0.2

0.0 0.0

(a) Ax =1,00 (b) Ax = 0.50
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Partial differential

equaitons: Conver- “t SWe¢ rM@ %
gence CE
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Longitudinal section: upwind, CFL =0.5 Longitudinal section: upwind, CFL =0.5
10 —_—t=0 104 ™ R
’7 —_—t=2 —_—t=2
—_—t=d — =4
0.8 0.8
—_—t =10 — =10
0.6 0.6
s 3
04 0.4
0.2 0.24
0.0 0.04
0.0 25 5.0 75 10.0 12.5 15.0 17.5 20.0 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

(c) Ax =0,10 (d) Ax =0,01

Timestep for Ax = 0,01 and CFL = 0,5:

A
At ="%.05=0,005 - 4000 timesteps,2000 points in space
u
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Partial differential

equaitons:  Quality (c SWe¢ rM

of a numerical model _
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» Consistency: Ax — 0, At — 0: discretization error — teammentor waier, Amospnere
> Stability: error bounded for the entire flow field
» Convergence = Consistency + Stability (Lax’ theorem)

Exact solution of the
discretized equations

Calculation

Discretization

Solution error
/ Discretization error N

Consistency Stabilty

Exact solution of the Convergence

Actually calnb
differential equations soluli/

Fig.: Quality of a numerical model (source: M. Tritthart)
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Transient open chan-

nel flow: Governing v
KU =

equations and dis- ‘& SW‘ rM@ IWA

cretization .
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Continuity (rectangular cross and Environment
section):

oh  9Q
b et =0 (1) T 4

Equation of motion (momentum):

pg(h+d.h)

0Q 0 Q? -
ot * ox b A Fig.: Equation of motion (16)

Oh (Aubrunner, 2009)
+tg A5 —htlr)=0(16)
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Transient open chan-

nel flow: Governing v
KU =
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Discreitization of the continuety equation (15) using the Euler scheme or
the Predictor-Corrector scheme:

AL _pn QP — QN
b e L 17
At 2. Ax (17)
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Transient open chan-

nel flow: Governing v
KU =
equations and dis- ‘L SW‘ rM@ IWA

cretization G
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Discretization of the equation of motion (16) using: Deparimentof Water, Amosphere

and Environment

Preissmann-Scheme: h and @ unknown at all mesh points

Abbott-Inesco Schema: unknown properties are defined alternately on the
mesh (staggered-grid scheme)

7 e / A i)
h thz Qz hsy, Q;/ Q hJA Q:ri

111 -1

(a) Preissmann-Scheme (b) Abbott-Inesco Scheme
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Transient open
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Study the flood wave from above using an implicit scheme
Tasks Hochwasserwelle impl.xlsm
1. What is the value of the peak discharge at the upper end the river
section

2. At what time does this peak discharge occur in the middle of the river
section

3. What is the value of the peak discharge in the middle of the river
section?

4. What is the range of R (stability criterion CFL)?
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Stencil of an explicit and an implicit scheme: and Emronment

Explizit Implizit

Ll

Fig.: Comparison of an explicit and and implicit scheme
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