



#### ٥٥

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

# Levelling of connected tanks and mass transport

Daniel Wildt

SWARM Summer School 15 – 26 November 2021

15th November 2021

.....

### Outline I





#### ٥٥

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

Finite Differences Method (FDM)

#### Leveling of two tanks

Analytical solution Numerical solution Summary

#### Mass transport

The Sandoz/Rhine accident 1986 Governing equations Boundary and initial conditions Analytical solution



Summer School Levelling of connected tanks and mass transport

# FDM: Definition of the slope from the SW2 M





Daniel Wildt 15/11/2021 Summer School Levelling of connected tanks and mass transport



Summer School Levelling of connected tanks and mass transport

## FDM: Approxima-tion of the derivative SW2 rM in Excel





#### ۵۵

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

|    | A         | В     | С       | D         | E       | F            | G            | н            | 1        | J            | К            | L            | м            | N            | 0              |
|----|-----------|-------|---------|-----------|---------|--------------|--------------|--------------|----------|--------------|--------------|--------------|--------------|--------------|----------------|
| 1  | х         | 1     |         |           |         |              |              |              |          |              |              |              |              |              |                |
| 2  | f(x)      | 6     |         |           |         |              |              |              |          |              |              |              |              |              |                |
|    | 1.1.1     |       |         |           |         |              |              |              |          | Difference   | Difference   | Differnce    | error        | error        | error          |
| 3  |           |       |         |           |         | forward      | backward     | central      |          | forward      | backward     | central      | forward      | backward     | central        |
|    | <u>Δx</u> | x+∆x  | x-∆x .  | f(x+∆x) . | f(x-∆x) | differencing | differencing | differencing | f'(x) .  | differencing | differencing | differencing | differencing | differencing | differencing . |
| 4  | 2.000     | 3.000 | -1.000  | 100.000   | 0.000   | . 47,000     | 3.000        | 25.000       | . 13.000 | . 34.000     | -10.000      | 12,000       | . 34.000     | 10.000       | 12.000         |
| 5  | 1.000     | 2.000 | 0.000   | 33.000    | 1.000   | 27.000       | 5.000        | 16.000       | 13.000   | 14.000       | -8.000       | 3.000        | 14.000       | 8.000        | 3.000          |
| 6  | 0.900     | 1.900 | 0.100   | 28.797    | 1.023   | 25.330       | 5.530        | 15.430       | 13.000   | 12.330       | -7.470       | 2.430        | 12.330       | 7.470        | 2.430          |
| 7  | 0.800     | 1.800 | 0.200   | 24.976    | 1.104   | 23.720       | 6.120        | 14.920       | 13.000   | 10.720       | -6.880       | 1.920        | 10.720       | 6.880        | 1.920          |
| 8  | 0.700     | 1.700 | 0.300   | 21.519    | 1.261   | 22.170       | 6.770        | 14.470       | 13.000   | 9.170        | -6.230       | 1.470        | 9.170        | 6.230        | 1.470          |
| 9  | 0.600     | 1.600 | 0.400   | 18.408    | 1.512   | 20.680       | 7.480        | 14.080       | 13.000   | 7.680        | -5.520       | 1.080        | 7.680        | 5.520        | 1.080          |
| 10 | 0.500     | 1.500 | 0.500   | 15.625    | 1.875   | 19.250       | 8.250        | 13.750       | 13.000   | 6.250        | -4.750       | 0:750        | 6.250        | 4.750        | 0.750          |
| 11 | 0.400     | 1.400 | 0.600   | 13.152    | 2.368   | 17.880       | 9.080        | 13.480       | · 13.000 | 4.880        | -3.920       | 0:480        | 4.880        | 3.920        | · 0.480        |
| 12 | 0.300     | 1.300 | 0.700   | 10.971    | 3.009   | 16.570       | 9.970        | 13.270       | 13.000   | · · 3.570    | -3.030       | 0.270        | 3.570        | 3.030        | 0.270          |
| 13 | 0.200     | 1.200 | 0.800   | . 9.064   | 3.816   | 15.320       | 10.920       | . 13.120     | . 13.000 | 2.320        | -2.080       | 0.120        | 2.320        | . 2.080      | 0.120          |
| 14 | 0.100     | 1.100 | . 0.900 | . 7.413   | .4.807  | 14.130       |              | . 13.030     | . 13.000 | 1.130        | -1.070       | . 0.030      | 1.130        | . 1.070      | 0.030          |
| 15 | 0.050     | 1.050 | 0.950   | 6.678     | 5.377   | 13.558       | 12.458       | 13.008       | 13.000   | 0.558        | -0.543       | 800.0        | 0.558        | 0.543        | 0.008          |
| 16 | 0.020     | 1.020 | 0.980   | 6.264     | 5.744   | 13.221       | 12.781       | 13.001       | 13.000   | 0.221        | -0.219       | 0.001        | 0.221        | 0.219        | 0.001          |
| 17 | 0.010     | 1.010 | 0.990   | 6.131     | 5.871   | 13.110       | 12.890       | 13.000       | 13.000   | 0.110        | -0.110       | 0.000        | 0.110        | 0.110        | 0.000          |
| 18 | 0.001     | 1.001 | 0.999   | 6.013     | 5.987   | 13.011       | 12.989       | 13.000       | 13.000   | 0.011        | -0.011       | 0.000        | 0.011        | 0.011        | 0.000          |

Fig.: Exercise: Approximation of the derivative in Excel

#### Finite Differences (FDM): 💦 SW? M 💵 Method Order of Accuracy

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment Error plot

Forward and backward differencing:

- $\triangleright$  linear relation between  $\Delta x$  and error
- ▶ 1<sup>st</sup> order accuracy

central differencing:

 $\triangleright$  quadratic relation between  $\Delta x$ and error

2<sup>nd</sup> order accuracy



Λx

Summer School Levelling of connected tanks and mass transport

## Leveling of two tanks: Problem SW2 M (

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment



Daniel Wildt 15/11/2021

• coefficient of resistance:  $\xi = 2,0$ 

inertia neglected





#### ۵٥

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

energy conservation:

$$z = \frac{v^2}{2g} \cdot \xi = \frac{Q^2}{A^2 \cdot 2g} \cdot \xi$$
$$\Rightarrow Q = A \cdot \sqrt{\frac{2g \cdot z}{\xi}} \quad (9)$$

Behälterausgleich Behälter B Behälter A ΔH  $\emptyset 1 \text{ m}^2$  $\nabla$ 5 m 10.000 m<sup>2</sup> 2 m

 $5.000 \text{ m}^2$ 

$$\Delta V = \int Q \, \mathrm{d}t = \int A \cdot \sqrt{\frac{2g \cdot z}{\xi}} \, \mathrm{d}t \quad .$$
(10)

Fig.: Leveling of two tanks connected through a pipe

# Leveling of two tanks: Analytical SW2 M (19)

Change of Water Surface elevation in

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment



# Leveling of two tanks: Analytical SW2 MORE



University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

 $\mathrm{d}z$  from equation 13 using equation 11 and 12:

$$dz = -(dx + dy) = -Q \cdot \left(\frac{1}{A_{A}} + \frac{1}{A_{B}}\right) dt = -\underbrace{A\sqrt{\frac{2g}{\xi}} \cdot \frac{A_{B} + A_{A}}{A_{A}A_{B}}}_{K} \sqrt{z} dt \quad (14)$$
$$dt = -\frac{1}{K}\frac{dz}{\sqrt{z}} \qquad (15)$$

integration of equation 15:

$$t(z) = -\frac{1}{K} \int_{\Delta H}^{z} \frac{1}{\sqrt{z}} \, \mathrm{d}z = -\frac{1}{K} \cdot 2\sqrt{z} \, \left|_{\Delta H}^{z} = 2 \cdot \frac{1}{K} \cdot \left(\sqrt{\Delta H} - \sqrt{z}\right)$$
(16)

#### 

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

Time until water surface elevations in tanks A and B are fully leveled out (z = 0):

$$t(0) = 2 \cdot \frac{1}{K} \cdot \left(\sqrt{\Delta H} - \sqrt{z}\right)$$
$$= 2 \cdot \frac{1}{A\sqrt{\frac{2g}{\xi}} \cdot \frac{A_{\rm B} + A_{\rm A}}{A_{\rm A}A_{\rm B}}} \cdot \left(\sqrt{\Delta H} - 0\right)$$
$$= 3.687 \,\mathrm{s}$$



#### Leveling of two tanks: solution ۵۵

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment



(17)

ks е

conservation of mass:

 $\Delta V = Q \cdot \Delta t = A_{\rm A} \cdot \Delta h_{\rm A} = A_{\rm B} \cdot \Delta h_{\rm B}$ 

# Leveling of two tanks: Numerical SW2 M (1)

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

Equations 20 and 21 using Behälterausgleich Behälter A Behälter B equations 18 and 19: ΔH  $h_{\mathrm{A}}^{n+1} = h_{\mathrm{A}}^n - \frac{\Delta V}{A_{\mathrm{A}}} = h_{\mathrm{A}}^n - \frac{Q \cdot \Delta t}{A_{\mathrm{A}}}$ øl m 5 m 10.000 m 2 m (22) $h_{\mathrm{B}}^{n+1} = h_{\mathrm{B}}^{n} + \frac{\Delta V}{A_{\mathrm{B}}} = h_{\mathrm{B}}^{n} + \frac{Q \cdot \Delta t}{A_{\mathrm{B}}}$  $5.000 \text{ m}^2$ Fig.: Leveling of two tanks connected (23) through a pipe

# Leveling of two tanks: Numerical SW2 MORE

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

Q from energy conservation (equation 9)

$$Q = A \cdot \sqrt{\frac{2g \cdot z}{\xi}}$$

different methods to approximate z:

- backward differencing
- central differencing



## Leveling of two tanks: Numerical SW2 CM

backward differencing (Euler method):



(24)

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

- $z=h_{
  m A}^n-h_{
  m B}^n$
- Zentrale Differenzen (Predictor-Correktor or Runge-Kutta method):

 $\Delta z^{n+\frac{1}{2}} = h_{\rm A}^{n+\frac{1}{2}} - h_{\rm B}^{n+\frac{1}{2}}$ (25)

mit : 
$$h_{\rm A}^{n+\frac{1}{2}} = \frac{h_{\rm A}^n + h_{\rm A}^{n+1\star}}{2}$$
  $h_{\rm B}^{n+\frac{1}{2}} = \frac{h_{\rm B}^n + h_{\rm B}^{n+1\star}}{2}$  (26)

with  $h_{\rm A}^{n+1\star}$  and  $h_{\rm B}^{n+1\star}$  estimated using backward differencing.

Daniel Wildt 15/11/2021

Summer School Levelling of connected tanks and mass transport

## Leveling of two tanks: Numerical SW2 CM (19) solution



University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

### Numerical solution in Excel applying the Euler method:

|   | Α       | B                | С     |
|---|---------|------------------|-------|
| 1 | g       | m/s <sup>2</sup> | 9.81  |
| 2 | А       | m <sup>2</sup>   | 1     |
| 3 | AA      | m²               | 10000 |
| 4 | AB      | m²               | 5000  |
| 5 | zeta    | 1                | 2     |
| 6 | Delta t | s                | 100   |

Fig.: Leveling of two tanks input

|    | A N | D    |       |       |       | - F   | 0              |          |          | J J          |
|----|-----|------|-------|-------|-------|-------|----------------|----------|----------|--------------|
| 1  | n   | t    | hA    | hB    | z     | Q     | Delta V        | hA_(n+1) | hB_(n+1) | t analytisch |
| 2  |     | s    | m     | m     | m     | m³/s  | m <sup>3</sup> | m        | m        | s            |
| 3  | 0   | 0    | 5.000 | 2.000 | 3.000 | 5.425 | 542.494        | 4.946    | 2.108    | (            |
| 4  | 1   | 100  | 4.946 | 2.108 | 2.837 | 5.276 | 527.574        | 4.893    | 2.214    | 101          |
| 5  | 2   | 200  | 4.893 | 2.214 | 2.679 | 5.126 | 512.648        | 4.842    | 2.317    | 203          |
| 6  | 3   | 300  | 4.842 | 2.317 | 2.525 | 4.977 | 497.715        | 4.792    | 2.416    | 304          |
| 7  | 4   | 400  | 4.792 | 2.416 | 2.376 | 4.828 | 482.776        | 4.744    | 2.513    | 406          |
| 8  | 5   | 500  | 4.744 | 2.513 | 2.231 | 4.678 | 467.830        | 4.697    | 2.606    | 507          |
| 9  | 6   | 600  | 4.697 | 2.606 | 2.091 | 4.529 | 452.876        | 4.652    | 2.697    | 609          |
| 10 | 7   | 700  | 4.652 | 2.697 | 1.955 | 4.379 | 437.914        | 4.608    | 2.784    | 71:          |
| 11 | 8   | 800  | 4.608 | 2.784 | 1.823 | 4.229 | 422.943        | 4.566    | 2.869    | 812          |
| 12 | 9   | 900  | 4.566 | 2.869 | 1.697 | 4.080 | 407.963        | 4.525    | 2.951    | 914          |
| 13 | 10  | 1000 | 4.525 | 2.951 | 1.574 | 3.930 | 392.972        | 4.485    | 3.029    | 1016         |
| 14 | 11  | 1100 | 4.485 | 3.029 | 1.456 | 3.780 | 377.971        | 4.448    | 3.105    | 1118         |
| 15 | 12  | 1200 | 4.448 | 3.105 | 1.343 | 3.630 | 362.958        | 4.411    | 3.177    | 1220         |
| 16 | 13  | 1300 | 4.411 | 3.177 | 1.234 | 3.479 | 347.932        | 4.377    | 3.247    | 1322         |
| 17 | 14  | 1400 | 4.377 | 3.247 | 1.130 | 3.329 | 332.892        | 4.343    | 3.313    | 1424         |
| 18 | 15  | 1500 | 4.343 | 3.313 | 1.030 | 3.178 | 317.836        | 4.311    | 3.377    | 152          |
| 19 | 16  | 1600 | 4.311 | 3.377 | 0.934 | 3.028 | 302.764        | 4.281    | 3.438    | 1629         |
| 20 | 17  | 1700 | 4.281 | 3.438 | 0.844 | 2.877 | 287.673        | 4.252    | 3.495    | 1732         |
| 21 | 18  | 1800 | 4.252 | 3.495 | 0.757 | 2.726 | 272.561        | 4.225    | 3.550    | 1834         |
|    |     |      |       |       |       |       |                |          |          |              |

Fig.: Numerical solution in Excel applying the Euler method

## Leveling of two tanks: Numerical SW2 rm (1990) solution



Numerical solution in Excel applying the Predictor-Corrector frethod:

|    | A   | В    | C     | D     | E     | F     | G              | Н         | 1         | J            | К          | L          | M           | N     | 0              | Р        | Q        |
|----|-----|------|-------|-------|-------|-------|----------------|-----------|-----------|--------------|------------|------------|-------------|-------|----------------|----------|----------|
| 1  | n t |      | hA    | hB    | z     | Q     | Delta V        | hA_(n+1)* | hB_(n+1)* | t analytisch | hA_(n+0.5) | hB_(n+0.5) | z PrädKorr. | Q     | Delta V        | hA_(n+1) | hB_(n+1) |
| 2  |     | 5    | m     | m     | m     | m³/s  | m <sup>3</sup> | m         | m         | s            | m          | m          | m           | m³/s  | m <sup>3</sup> | m        | m        |
| 3  | 0   | 0    | 5.000 | 2.000 | 3.000 | 5.425 | 542.494        | 4.946     | 2.108     | 0            | 4.973      | 2.054      | 2.919       | 5.351 | 535.086        | 4.946    | 2.107    |
| -4 | 1   | 100  | 4.946 | 2.107 | 2.839 | 5.278 | 527.781        | 4.894     | 2.213     | 100          | 4.920      | 2.160      | 2.760       | 5.204 | 520.371        | 4.894    | 2.211    |
| 5  | 2   | 200  | 4.894 | 2.211 | 2.683 | 5.131 | 513.067        | 4.843     | 2.314     | 200          | 4.869      | 2.262      | 2.606       | 5.057 | 505.656        | 4.844    | 2.312    |
| 6  | 3   | 300  | 4.844 | 2.312 | 2.532 | 4.984 | 498.354        | 4.794     | 2.412     | 300          | 4.819      | 2.362      | 2.457       | 4.909 | 490.941        | 4.795    | 2.410    |
| 7  | 4   | 400  | 4.795 | 2.410 | 2.384 | 4.836 | 483.640        | 4.746     | 2.507     | 400          | 4.771      | 2.459      | 2.312       | 4.762 | 476.226        | 4.747    | 2.506    |
| 8  | 5   | 500  | 4.747 | 2.506 | 2.242 | 4.689 | 468.927        | 4.700     | 2.599     | 500          | 4.724      | 2.553      | 2.171       | 4.615 | 461.511        | 4.701    | 2.598    |
| 9  | 6   | 600  | 4.701 | 2.598 | 2.103 | 4.542 | 454.214        | 4.656     | 2.689     | 600          | 4.678      | 2.643      | 2.035       | 4.468 | 446.796        | 4.656    | 2.687    |
| 10 | 7   | 700  | 4.656 | 2.687 | 1.969 | 4.395 | 439.501        | 4.612     | 2.775     | 700          | 4.634      | 2.731      | 1.903       | 4.321 | 432.081        | 4.613    | 2.774    |
| 11 | 8   | 800  | 4.613 | 2.774 | 1.839 | 4.248 | 424.788        | 4.571     | 2.859     | 800          | 4.592      | 2.816      | 1.776       | 4.174 | 417.366        | 4.571    | 2.857    |
| 12 | 9   | 900  | 4.571 | 2.857 | 1.714 | 4.101 | 410.076        | 4.530     | 2.939     | 900          | 4.551      | 2.898      | 1.653       | 4.027 | 402.651        | 4.531    | 2.938    |
| 13 | 10  | 1000 | 4.531 | 2.938 | 1.593 | 3.954 | 395.363        | 4.492     | 3.017     | 1000         | 4.511      | 2.977      | 1.534       | 3.879 | 387.936        | 4.492    | 3.015    |
| 14 | 11  | 1100 | 4.492 | 3.015 | 1.477 | 3.807 | 380.651        | 4.454     | 3.091     | 1100         | 4.473      | 3.053      | 1.420       | 3.732 | 373.221        | 4.455    | 3.090    |
| 15 | 12  | 1200 | 4.455 | 3.090 | 1.365 | 3.659 | 365.939        | 4.418     | 3.163     | 1200         | 4.437      | 3.127      | 1.310       | 3.585 | 358.506        | 4.419    | 3.162    |
| 16 | 13  | 1300 | 4.419 | 3.162 | 1.257 | 3.512 | 351.227        | 4.384     | 3.232     | 1300         | 4.402      | 3.197      | 1.205       | 3.438 | 343.791        | 4.385    | 3.230    |
| 17 | 14  | 1400 | 4.385 | 3.230 | 1.154 | 3.365 | 336.515        | 4.351     | 3.298     | 1400         | 4.368      | 3.264      | 1.104       | 3.291 | 329.076        | 4.352    | 3.296    |
| 18 | 15  | 1500 | 4.352 | 3.296 | 1.056 | 3.218 | 321.804        | 4.320     | 3.361     | 1500         | 4.336      | 3.328      | 1.007       | 3.144 | 314.360        | 4.320    | 3.359    |
| 19 | 16  | 1600 | 4.320 | 3.359 | 0.961 | 3.071 | 307.093        | 4.290     | 3.421     | 1600         | 4.305      | 3.390      | 0.915       | 2.996 | 299.645        | 4.290    | 3.419    |
| 20 | 17  | 1700 | 4.290 | 3.419 | 0.871 | 2.924 | 292.383        | 4.261     | 3.478     | 1700         | 4.276      | 3.448      | 0.828       | 2.849 | 284.930        | 4.262    | 3.476    |
| 21 | 18  | 1800 | 4.262 | 3.476 | 0.786 | 2.777 | 277.673        | 4.234     | 3.532     | 1800         | 4.248      | 3.504      | 0.744       | 2.702 | 270.215        | 4.235    | 3.530    |

Fig.: Numerical solution in Excel applying the Predictor-Corrector method

# Leveling of two tanks: Numerical SW2 M ()

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere ronment



Leveling of two containers

Fig.: Levelling of two containers: comparison of solutions

#### 

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

Solution using the prepared Excel-Worksheet by Maurer (2010) Behaelterausgleich\_Maurer.xlsm note: access VBA-code via Developer Tools > VBA tasks:

- Which convergence criteria is used?
- How long does it take for the water surfaces in the tanks to level out?
- How long does it take for the water surfaces in the tanks to level out when the pipe diameter is doubled?
- How can the difference between the Euler and the Predictor-Corrector method be explained?



#### ٥٥

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

Tab.: Comparison between an analytical and a numerical solution

| analytical solution                                         | numerical solution                                                                          |  |  |  |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|--|--|
| available in special cases only no discretization necessary | can be derived for any problem<br>suitable discretization necessary for<br>accurate results |  |  |  |
| function can be evaluated at indi-<br>vidual points         | function needs to be solved for the entire domain                                           |  |  |  |

Mass transport: The Sandoz/Rhine accident 1986





University of Natural Resources and Life Sciences, Vienna Denartment of Water, Atmosphere





Fig.: Plainly Difficult: "A Brief History of: The Sandoz Chemical Disaster (Short Documentary)" https://www.youtube.com/watch?v=6RjTvN2QhSY (7:08 min)

Mass transport: The dent 1986





University of Natural Resources and Life Sciences, Vienna Department of Water Atmo

Fig.: source: Badische Zeitung/dapd (IKSR, 2016)

- one of the severest environmental disasters caused by humans in Europe
- chemically polluted water from discharged into the Rhine river
- Rhine polluted over a length of 400 km
- initiation of new developments in water protection
- amongst others development of the Rhine-Alarm model (Mazijk et al., 1991)

(IKSR, 2016)

Mass transport: The Sandoz/Rhine acci- SW2MM (1986)

Aim of the model is to predict

- time of arrival of the polluted water
- maximum concentration of pollutants
- end of contamination

on any point along the river length (Mazijk et al., 1991). allows to warn e.g.:

- waterworks
- fishers

https://www.chr-khr.org/de/veroffentlichung/

rheinalarmmodell-version-20-kalibrierung-und-verifikatiRhine-Alarm model





report of the

(Mazijk et al., 1991)



# Mass





#### ۵۵

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

Advection equation:

$$\frac{\partial c}{\partial t} + \boldsymbol{u} \cdot \nabla c = 0$$
$$\frac{\partial c}{\partial t} + \boldsymbol{u} \cdot \frac{\partial c}{\partial x} = 0$$

Advection-Diffusion equation:

$$\frac{\partial c}{\partial t} + u \cdot \frac{\partial c}{\partial x} + D_0 \frac{\partial^2 c}{\partial x^2} = 0$$
(29)

for comparison: diffusion only

$$\frac{\partial \phi}{\partial t} + \Gamma \frac{\partial^2 \phi}{\partial x^2} = 0 \tag{30}$$

Daniel Wildt 15/11/2021

Summer School Levelling of connected tanks and mass transport





#### ۵۵

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

Examples:

- advection only: transport of a solid
- diffusion only: heat transport in a solid
- advection and diffusion: dissolved substance in a fluid



Fig.: Scheme of mass transport without diffusion (top) and with diffusion (bottom) (Maurer, 2010)

# Mass transport: **Coverning equations**

Semi-empirical calculation of the coefficient of dispersion  $D_0$ :

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

۵۵

$$D_0 = \alpha \cdot \frac{u^2 \cdot B_5^2}{\bar{h} \cdot u_\star} \qquad \text{mit } u_\star = \frac{u \cdot \sqrt{g}}{C} = \frac{u \cdot g^{\frac{1}{2}}}{k_{\text{St}} \cdot \sqrt[3]{\bar{h}}} \tag{31}$$

Dispersion has the same effect as diffusion, but the coefficient of dispersion can be several orders of magnitudes higher than the coefficient of diffusion.

| $\alpha$       | <br>dimensionless constant $[\alpha] = 1$                 |
|----------------|-----------------------------------------------------------|
| $B_S$          | <br>effective river width $[B_S] = m$                     |
| ħ              | <br>average water depth $[ar{h}]={\sf m}$                 |
| u <sub>*</sub> | <br>shear stress velocity $[u_\star] = { m ms}^{-1}$      |
| g              | <br>gravitational acceleration $[g] = m s^{-2}$           |
| С              | <br>Chézy-Coefficient $[C] = m^{1/2} s^{-1}$              |
| $k_{ m St}$    | <br>Strickler-Coefficient $[k_{\rm St}] = m^{1/3} s^{-1}$ |



# Mass transport: **SW2rM**

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere

stagnant water zones: extension for non-uniform velocity distributions along the river width (Chatwin, 1980)



# Mass





(32`

#### ۵۵

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

Transport velocity  $c_v$ :

$$c_{v} = \frac{u}{1+\beta}$$
 mit  $\beta = \kappa \cdot \frac{A_{b}}{A_{s}}$ 

| C <sub>v</sub> | <br>mass transport velocity $[c_v] = m  \mathrm{s}^{-1}$ |
|----------------|----------------------------------------------------------|
| $\beta$        | <br>portion of stagnant water zones $[eta]=1$            |
| $\kappa$       | <br>exchange coefficient $[\kappa]=1$                    |
| $A_b$          | <br>storing cross sectional area $[A_b] = m^2$           |
| $A_s$          | <br>effective cross sectional area $[A_s] = m^2$         |

ad  $\kappa$  (exchange between stagnant and effective water zones): set  $\kappa = 1$  for complete exchange

Mass transport: Boundary and initial SW2 MORE ( conditions

> University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

Boundary and initial conditions:

- total mass added at one particular instance in time and at one particular point along the river
- steady-state and uniform flow<sup>1</sup>
- initially no-substance in the river

<sup>1</sup>extension for non-uniform flow already implemented in the Rhine-Alarm model

# Mass transport: Analytical solution



#### ٥٥

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

Equation 29 using boundary and initial conditions from above can be solved analytically using Taylor-polynomials (Fischer et al., 1979).

$$c(x,t) = \frac{\frac{M}{Q}}{\sqrt{4\pi D_0 \frac{t}{u_s^2}}} \cdot \exp\left(-\frac{\left(t - \frac{x}{u_s}\right)^2}{4D_0 \frac{t}{u_s^2}}\right)$$
(33)

Daniel Wildt 15/11/2021

Summer School Levelling of connected tanks and mass transport

### Mass transport: Analytical solution



University of Natural Resources and Life Sciences, Vienna

Taking stagnant water zones into account results in the following equation:

$$c(x,t) = \frac{\frac{M}{Q}}{\sqrt{4\pi D_0 \frac{t}{c_v^2}}} \cdot \exp\left(-\frac{\left(t - \frac{x}{c_v}\right)^2}{4D_0 \frac{t}{c_v^2}}\right) \cdot \left(1 + \frac{G_t}{6} \cdot H_3 \cdot \frac{t - \frac{x}{c_v}}{\sqrt{2D_0 \frac{t}{c_v^2}}}\right) (34)$$

$$H_3[z] = z^3 - 3z \quad \text{Hermitian polynomial } (z = \frac{t - \mu_t}{\sigma_t})$$

$$\mu_t \quad \dots \quad \text{mean } [\mu_t] = s$$

$$\sigma_t \quad \dots \quad \text{variance } [\sigma_t] = s^2$$

$$G_t = \frac{|g_t|}{|\sigma_t^3|} \quad \dots \quad \text{skewness } [G_t] = 1$$

$$g_t \quad \dots \quad 3. \quad \text{moment } [g_t] = s^3$$

### Mass transport: Analytical solution





University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere

Solution using the prepared Excel-Worksheet by Maurer (20 Compared Water, Atmosphere masstransport.xlsm note: access VBA-code via Developer Tools > VBA Input values river:

- length of the river section: L = 80 km
- Mannings' coeffecient:  $\frac{1}{n} = k_{St} = 35 \text{ m}^{1/3} \text{ s}^{-1}$
- discharge  $Q = 1\,800\,\mathrm{m}^3\,\mathrm{s}^{-1}$
- effective cross sectional area:  $A_s = 750 \text{ m}^2$
- effective river width:  $B_s = 75 \text{ m}$
- storing cross sectional area:  $A_D = 120 \text{ m}^2$
- water depth: h = 5 m

## Mass transport: Analytical solution





#### ۵0

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

Input values substance:

- mass of added substance: m = 2 kg
- coefficient  $\kappa = 1$
- coefficient of dispersion: α = 1
- Skewness:  $G_t = 1$

#### Tasks masstransport.xlsm

- When is the maximum concentration occuring in the middle of the river section?
- How high is the maximum concentration in the middle of the river section
- What would be the respective values when stagnant water zones are neglected?

Daniel Wildt 15/11/2021 Summer School Levelling of connected tanks and mass transport





#### ٥٥

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

University of Natural Resources and Life Science, Vienna

Department of Water, Atmosphere and Environment

Institut of Hydraulic Engineering and River Research

Daniel Wildt, MSc

Muthgasse 107, A - 1190 Wien Tel.: 01-47654-81935 daniel.wildt@boku.ac.at http://www.wau.boku.ac.at/iwa/

### Literature I



University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

۵۵

Chatwin, P. C. (1980). 'Presentation of Longitudinal Dispersion Data'. In: *Journal of Hydraulics Division* 106 (1), pp. 71–83.

- Fischer, H. B., E. J. List, R. C. Y. Koh, J. Imberger and N. H. Brooks (1979). Mixing in Inland and Coastal Waters. San Diego: Academic Press, Inc. Harcourt Brace Jovanovich, Publishers.
- IKSR Internationale Kommision zum Schutz des Rheins (2016). Der Rhein 30 Jahre nach Sandoz. Hintergrundinformationen für die Pressekonferenz am 13. Oktober 2016.
- Maurer, D. (2010). 'Arbeitsblattbasierende Programme zur eindimensionalen Berechnung von Staukurven, Schadstoffeinträgen und Hochwasserwellen in offenen Gerinnen'. Masterarbeit. Universität für Bodenkultur Wien.

### Literature II





#### ٥٥

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

Mazijk, A. van, P. Verwoerdt, J. van Mierlo, M. Bremicker and H. Wiesner (1991). *Rheinalarmmodell Version 2.0 Kalibrierung und Verifikation*. Internationale Kommission zum Schutze des Rheins gegen Verunreinigung. URL: https://www.chr-khr.org/de/veroffentlichung/rheinalarmmodell-version-20-kalibrierung-und-verifikation.